Submit Manuscript  

Article Details


Development of Lipid Nanocarriers for Tuberculosis Treatment: Evaluation of Suitable Excipients and Nanocarriers

[ Vol. 18 , Issue. 6 ]

Author(s):

Gabriela Hädrich , Gustavo Richter Vaz, Raphael Boschero, Arthur Sperry Appel, Carina Ramos, Priscila Cristina Bartolomeu Halicki, Juliana Bidone, Helder Ferreira Teixeira, Ana Luiza Muccillo-Baisch, Alexandre Dal-Bó, Luciano Silva Pinto, Lea-Ann Dailey, Pedro Eduardo Almeida Da Silva, Daniela Fernandes Ramos and Cristiana Lima Dora*   Pages 770 - 778 ( 9 )

Abstract:


Background: Lipid nanocarriers have been widely tested as drug delivery systems to treat diseases due to their bioavailability, controlled release, and low toxicity. For the pulmonary route, the Food and Drug Administration favors the use of substances generally recognized as safe, as well as biodegradable and biocompatible to minimize the possibility of toxicity. Tuberculosis (TB) remains a public health threat worldwide, mainly due to the long treatment duration and adverse effects. Therefore, new drug delivery systems for treating TB are needed.

Objective: Physicochemical characterization of different lipid-based nanocarriers was used to optimize carrier properties. Optimized systems were incubated with Mycobacterium tuberculosis to assess whether lipid-based systems act as the energy source for the bacteria, which could be counterproductive to therapy.

Methods: Several excipients and surfactants were evaluated to prepare different types of nanocarriers using high-pressure homogenization.

Results: A mixture of trimyristin with castor oil was chosen as the lipid matrix after differential scanning calorimetry analysis. A mixture of egg lecithin and PEG-660 stearate was selected as an optimal surfactant system, as this mixture formed the most stable formulations. Three types of lipid nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers (NLC), and nanoemulsions, were prepared, with the NLC systems showing the most suitable properties for further evaluation. It may provide the advantages of increasing the entrapment efficiency, drug release, and the ability to be lyophilized, producing powder for pulmonary administration as an alternative to entrap poor water-soluble molecules.

Conclusion: Furthermore, the NLC system can be considered for use as a platform for the treatment of TB through the pulmonary route.

Keywords:

Biotechnology, drug delivery, nanobioscience, nanomedicine, pharmaceuticals, microbiology.

Affiliation:

Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Laboratorio de Desenvolvimento Galenico, Programa de Pos-graduacao em Ciencias Farmaceuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, ePrograma de Pos-Graduacao em Ciencia e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Cricima, Programa de Pos-Graduacao em Biotecnologia, Universidade Federal de Pelotas, Pelotas, Department of Pharmaceutical Technology and Biopharmacy, University of Vienna, Althanstraße 14, 1090 Vienna, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande, Programa de Posgraduacao em Ciencias da Saude, Universidade Federal do Rio Grande, Rio Grande

Graphical Abstract:



Read Full-Text article