Submit Manuscript  

Article Details


Organic Cation Transporters are Involved in Fluoxetine Transport Across the Blood-Brain Barrier in Vivo and in Vitro

Author(s):

Min Wang, Yingying Sun, Bingying Hu, Zhisheng He, Shanshan Chen, Dake Qi, Hai An and Yang Wei*  

Abstract:


Background: The research and development of drugs for the treatment of central nervous system diseases faces many challenges at present. One of the most important questions to be answered is, how does the drug cross the blood-brain barrier to get to the target site for pharmacological action. Fluoxetine is widely used in clinical antidepressant therapy. However, the mechanism by which fluoxetine passes through the BBB also remains unclear. Under physiological pH conditions, fluoxetine is an organic cation with a relatively small molecular weight (<500), which is in line with the substrate characteristics of organic cation transporters (OCTs). Therefore, this study aimed to investigate the interaction of fluoxetine with OCTs at the BBB and BBB-associated efflux transporters. This is of great significance for fluoxetine to better treat depression. Moreover, it can provide a theoretical basis for clinical drug combinations.

Methods: In vitro BBB model was developed using human brain microvascular endothelial cells (hCMEC/D3), and the cellular accumulation was tested in the presence or absence of transporter inhibitors. In addition, an in vivo trial was performed in rats to investigate the effect of OCTs on the distribution of fluoxetine in the brain tissue. Fluoxetine concentration was determined by a validated UPLC-MS/MS method.

Results: The results showed that amantadine (an OCT1/2 inhibitor) and prazosin (an OCT1/3 inhibitor) significantly decreased the cellular accumulation of fluoxetine (P <.001). Moreover, we found that N-methylnicotinamide (an OCT2 inhibitor) significantly inhibited the cellular uptake of 100 and 500 ng/mL fluoxetine (P <.01 and P <.05 respectively). In contrast, corticosterone (an OCT3 inhibitor) only significantly inhibited the cellular uptake of 1000 ng/mL fluoxetine (P <.05). The P-glycoprotein (P-gp) inhibitor, verapamil, and the multidrug resistance resistance-associated proteins (MRPs) inhibitor, MK571, significantly decreased the cellular uptake of fluoxetine. However, intracellular accumulation of fluoxetine was not significantly changed when fluoxetine was incubated with the breast cancer resistance protein (BCRP) inhibitor Ko143. Furthermore, in vivo experiments proved that corticosterone and prazosin significantly inhibited the brain-plasma ratio of fluoxetine at 5.5 h and 12 h, respectively.

Conclusion: OCTs might play a significant role in the transport of fluoxetine across the BBB. In addition, P-gp, BCRP, and MRPs seemed not to mediate the efflux transport of fluoxetine.

Keywords:

fluoxetine, blood-brain barrier, hCMEC/D3, OCTs, amantadine, prazosin

Affiliation:

Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou



Full Text Inquiry